
Mitigating Negative Side Effects via Environment Shaping
Extended Abstract

Sandhya Saisubramanian

University of Massachusetts Amherst

Shlomo Zilberstein

University of Massachusetts Amherst

ABSTRACT
Agents operating in the open world often produce negative side
effects (NSE), which are difficult to identify at design time. We exam-

ine how a human can assist an agent, beyond providing feedback,

and exploit their broader scope of knowledge to mitigate the im-

pacts of NSE. We formulate this problem as a human-agent team

with decoupled objectives. The agent optimizes its assigned task,

during which its actions may produce NSE. The human shapes

the environment through minor reconfiguration actions so as to

mitigate the impacts of agent’s side effects, without significantly

degrading agent performance. We present an algorithm to solve this

problem. Empirical evaluation shows that the proposed framework

can successfully mitigate NSE, without affecting the agent’s ability

to complete its assigned task.

KEYWORDS
Negative Side Effects; Environment Shaping; Human-AI Teamwork

ACM Reference Format:
Sandhya Saisubramanian and Shlomo Zilberstein. 2021. Mitigating Negative

Side Effects via Environment Shaping: Extended Abstract. In Proc. of the
20th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2021), Online, May 3–7, 2021, IFAAMAS, 3 pages.

1 INTRODUCTION
Deploying AI systems requires complex design choices to support

safe operation in the open world. During the design and initial test-

ing, the system designer typically ensures that the agent’s model

includes all the necessary details relevant to its assigned task. In-

herently, many other details of the environment that are unrelated

to this task may be ignored. Due to this model incompleteness, the

agent’s actions may create negative side effects (NSE) [1, 6]. Mitigat-

ing such NSE is critical to improve trust in deployed AI systems.

However, it is practically impossible to identify all such NSE at

design time since agents are deployed in varied settings. Deployed

agents often do not have any prior knowledge about NSE, and

therefore they do not have the ability to minimize NSE. How can
we leverage human assistance and their broader scope of knowledge
to mitigate the negative side effects, when agents are unaware of the
side effects and the associated penalties?

A common solution approach in the existing literature is to

update the agent’s model by learning about NSE through feed-

back [2, 5, 7]. This approach has three main drawbacks: (1) the NSE

may be non-Markovian with respect to the agent’s limited state

representation—containing only the features related to its task; (2)

Proc. of the 20th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2021), U. Endriss, A. Nowé, F. Dignum, A. Lomuscio (eds.), May 3–7, 2021, Online.
© 2021 International Foundation for Autonomous Agents and Multiagent Systems

(www.ifaamas.org). All rights reserved.

extensive model revisions are costly and will likely require exhaus-

tive evaluation before the system can be redeployed; and (3) does

not mitigate the impacts when the NSE are unavoidable.

The key insight of this paper is that agents often operate in

environments that are configurable, which can be leveraged to

mitigate NSE. We propose environment shaping for deployed

agents: a process of applying simple modifications to the current

environment to make it more agent-friendly and minimize the

occurrence of NSE. Simple modifications to the environment have

shown to accelerate agent learning [4] and goal recognition [3].

We target settings in which environment shaping can reduce NSE,

without significantly degrading the performance of the agent in

completing its assigned task. Our formulation consists of an actor
and a designer with decoupled objectives. The actor agent computes

a policy that optimizes the completion of its assigned task and has

no knowledge about NSE of its actions. The designer agent shapes

the environment through minor modifications so as to mitigate

the NSE of actor’s actions, without affecting the actor’s ability to

complete its assigned task.

2 ACTOR-DESIGNER FRAMEWORK
Consider an actor agent that operates based on a Markov deci-

sion process (MDP) Ma in an environment that is configurable

and described by a configuration file E, such as a map. A factored

state representation is assumed. Executing the policy π , computed

using Ma , to complete its assigned task oP may lead to NSE, un-

known to the actor. The environment designer measures the im-

pact of NSE associated with the actor’s π and shapes the envi-

ronment, if necessary. Optimizing oP is prioritized over avoiding

NSE. Hence, the designer shapes the environment in response to π .
Each modification is a sequence of design actions. An example is

{move(table, l1, l2), remove(ruд)}, which moves the table from l1
to l2 and removes the rug, resulting in a new environment configu-

ration. The actor and the environment designer share the configu-

ration file of the environment, which is updated by the designer to

reflect the modifications. Wemake the following assumptions about

shaping for NSE: (1) NSE are undesirable but not safety-critical, and

its occurrence does not affect the actor’s ability to complete its task;

(2) the start and goal conditions of the actor are fixed and cannot be

altered; and (3) modifications are applied tentatively for evaluation

purposes and the environment is reset if the reconfiguration affects

the actor’s ability to complete its task or if the modification does

not minimize the NSE.

Definition 1. An actor-designer framework to mitigate negative
side effects (AD-NSE) is defined by ⟨E0, E,Ma ,Md ,δA,δD ⟩ with:
• E0 denoting the initial environment configuration of the actor;
• E denoting a finite set of possible reconfigurations of E0;
• Ma = ⟨S,A,T ,R, s0, sG ⟩ is the actor’s MDP with start state s0 and
goal state sG , corresponding to its task oP ;

• Md = ⟨Ω,Ψ,C,N ⟩ is the model of the designer with Ω denoting a
finite set of valid modifications for E0, including ∅ to indicate that
no changes are made; Ψ : E × Ω → E determines the resulting
environment configuration after applying a modification ω ∈ Ω
and is denoted by Ψ(E,ω); C : E × Ω → R specifies the cost of
applying amodification to an environment, withC(E, ∅)=0,∀E ∈E;
and N = ⟨π ,E, ζ ⟩ is a model specifying the penalty for NSE in
environment E ∈ E for the actor’s policy π , with ζ mapping states
in π to E for severity estimation;

• δA ≥ 0 is the actor’s slack, denoting the maximum allowed devia-
tion from the initial optimal policy when recomputing its policy in
a modified environment; and

• δD ≥ 0 indicates the designer’s tolerance threshold for NSE.

The actor and the designer do not have knowledge about each

other’s model. The designer observes a finite number of demon-

strations of the actor’s policy, D = {τ1,τ2, . . . ,τn }. Using D, the

designer extracts the actor’s policy and measure its NSE in the

current environment configuration E, denoted by N E
π . The environ-

ment is modified if N E
π > δD , assuming π is fixed. The designer

selects a modification that maximizes its utility, calculated as:

Uπ (ω) =
(
N E
π − N

Ψ(E,ω)
π

)
−C(E,ω),

with N E
π − N

Ψ(E,ω)
π denoting the reduction in NSE. The designer

updates the configuration file to reflect the modifications, which is

used by the actor to recompute its policy. Apart from D and the

environment configuration, no other knowledge is shared between

the actor and the designer. It is assumed that the cost of applying an

ω is in the same units as the NSE penalty, and it may be amortized

over episodes of the actor performing the task in the environment.

3 SOLUTION APPROACH
Our solution approach is outlined in Figure 1 and proceeds in two

phases: planning phase and shaping phase. In the planning phase,

the actor computes a policy π for oP in the current environment

configuration and provides limited demonstrations D, which are

trajectories from start to goal. In the shaping phase (indicated by

blue symbols in Figure 1), the designer first extracts a policy π̂
from D by associating states with actions observed. Then, the

corresponding NSE penalty, N E
π̂ , is estimated. If N E

π̂ > δD , the
designer applies a utility-maximizing modification and updates the

configuration file, which is then used by the actor to recompute

its policy. The modifications are tentative during the shaping and
evaluation, and reset if it affects the actor’s performance or does not

minimize NSE. Therefore, all modifications are applied to E0 and
it suffices to test each ω without replacement as the actor always

Figure 1: Overview of our solution approach tomitigate NSE
via environment shaping.

(a) Avoidable NSE (b) Unavoidable NSE

Figure 2: Results on boxpushing domain with avoidable and
unavoidable NSE.

calculates the corresponding optimal policy. The actor returns D=

{} when the modification affects its assigned task, given δA.
The planning and shaping phases alternate until one of the fol-

lowing conditions is met: (1) the NSE is within δD ; (2) allω ∈Ω have

been tested; or (3) the utility-maximizing option does not make any

modification at all,ω∗=∅. Upon termination, the algorithm outputs

an NSE-minimizing configuration of the environment.

In shaping with budget, the budget 0<b ≤ |Ω | denotes the maxi-

mum number of modifications the designer is willing to evaluate. In

this case, b diverse modifications are selected for evaluation in the

shaping phase, instead of using the entire Ω. Diverse modifications

are selected by comparing all pairs of ω. When two modifications

result in similar configurations, we prune the modification with

a higher cost. The similarity threshold for pruning is a tunable

parameter. Measures such as the Jaccard distance or embeddings

may be used to estimate the similarity between two configurations.

4 RESULTS AND FUTUREWORK
The performance of our approach is compared with: (1) Initial
approach in which the actor’s policy is naively executed and does

not involve shaping or any form of learning to mitigate NSE; and

(2) Feedback approach in which the human approves or disapproves

agent actions [5]. The budget for feedback is 500. In Feedback w/
generalization, the actor generalizes the human feedback to unseen

situations by learning a predictive model of NSE occurrence. We

report results on the boxpushing domain in which the actor is

required to minimize the expected time taken to push a box to

the goal location. Each state is represented as ⟨x ,y,b⟩ where x ,y
denote the agent’s location and b is a boolean variable indicating if

the agent is pushing the box. Pushing the box over the rug results in

NSE with a penalty of 5. We experiment with a grid of size 15 × 15.

We consider 24 modifications, such as adding a protective sheet over

the rug, removing the rug, block access to the rug, among others.

Figure 2 plots the results with δA=25% of the optimal expected cost

of oP , δD =0, and b=3, as the number of observed actor trajectories

is increased. Our results demonstrate the effectiveness of shaping

in mitigating NSE. In the future, we aim to develop techniques to

automatically identify and efficiently explore a large space of valid

modifications.

ACKNOWLEDGMENTS
Support for this work was provided in part by the Semiconductor

Research Corporation under grant #2906.001.

REFERENCES
[1] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and

Dan Mané. 2016. Concrete Problems in AI Safety. arXiv preprint arXiv:1606.06565
(2016).

[2] Dylan Hadfield-Menell, Smitha Milli, Pieter Abbeel, Stuart J. Russell, and Anca

Dragan. 2017. Inverse Reward Design. InAdvances in Neural Information Processing
Systems. 6765–6774.

[3] Sarah Keren, Avigdor Gal, and Erez Karpas. 2014. Goal Recognition Design.

In Proceedings of the 24th International Conference on Automated Planning and
Scheduling.

[4] Jette Randløv. 2000. Shaping in Reinforcement Learning by Changing the Physics

of the Problem. In Proceedings of the 17th International Conference on Machine

Learning. 767–774.
[5] Sandhya Saisubramanian, Ece Kamar, and Shlomo Zilberstein. 2020. A Multi-

Objective Approach to Mitigate Negative Side Effects. In Proceedings of the 29th
International Joint Conference on Artificial Intelligence. 354–361.

[6] Sandhya Saisubramanian, Shlomo Zilberstein, and Ece Kamar. 2020. Avoid-

ing Negative Side Effects due to Incomplete Knowledge of AI Systems. CoRR
abs/2008.12146 (2020).

[7] Shun Zhang, Edmund H. Durfee, and Satinder P. Singh. 2018. Minimax-Regret

Querying on Side Effects for Safe Optimality in Factored Markov Decision Pro-

cesses. In Proceedings of the 27th International Joint Conference on Artificial Intelli-
gence. 4867–4873.

	Abstract
	1 Introduction
	2 Actor-Designer Framework
	3 Solution Approach
	4 Results and Future Work
	Acknowledgments
	References

