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Abstract
Autonomous agents acting in the real-world often operate based on models that
ignore certain aspects of the environment. The incompleteness of any given
model – handcrafted or machine acquired – is inevitable due to practical limi-
tations of any modeling technique for complex real-world settings. Due to the
limited fidelity of itsmodel, an agent’s actionsmay have unexpected, undesirable
consequences during execution. Learning to recognize and avoid such negative
side effects (NSEs) of an agent’s actions is critical to improve the safety and relia-
bility of autonomous systems.MitigatingNSEs is an emerging research topic that
is attracting increased attention due to the rapid growth in the deployment of AI
systems and their broad societal impacts. This article provides a comprehensive
overview of different forms of NSEs and the recent research efforts to address
them. We identify key characteristics of NSEs, highlight the challenges in avoid-
ing NSEs, and discuss recently developed approaches, contrasting their benefits
and limitations. The article concludes with a discussion of open questions and
suggestions for future research directions.

INTRODUCTION

A world populated with intelligent and autonomous sys-
tems that simplify our lives is gradually becoming a
reality. These systems are autonomous in the sense that
they can devise a sequence of actions to achieve some
given objectives or goals, without human intervention.
Such systems are deeply integrated into our daily lives
through various applications such as mobile health mon-
itoring (Sim 2019), intelligent tutoring (Folsom-Kovarik,
Sukthankar, and Schatz 2013), self-driving cars (Zilberstein
2015), and clinical decision making (Bennett and Hauser
2013). This broad deployment brings along new chal-
lenges and increased responsibility for designers of AI sys-
tems, particularly ensuring that these systems operate as
expected when deployed in the real-world. Despite recent
advances in artificial intelligence and machine learning,
there are noways to assure that systemswill always “do the

right thing” when operating in the open world (Lakkaraju
et al. 2017).
For example, consider an autonomous vehicle (AV) that

was carefully designed and tested for safety aspects such
as yielding to pedestrians and conforming to traffic rules.
When deployed, the AV may not slow down when driving
through puddles and splash water on nearby pedestrians.
Another documented example of undesirable behavior in
AVs is the vehicle swerving left and right multiple times
to localize itself for active lane keeping. During this pro-
cess, the vehicle rarely prompted the driver to take con-
trol (Insurance Institute for Highway Safety 2018). This
behavior, especially on curvy and hilly roads, can startle
the driver or cause panic.
Undesirable behaviors may occur even when perform-

ing relatively simple tasks. For example, robot vacuum
cleaners are becoming increasingly popular and they have
a simple task – to remove dirt from the floor. A robot
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F IGURE 1 Negative side effects of an agent’s behavior

vacuum cleaner in Florida ran over animal feces in the
house and continued its cleaning cycle, smearing the mess
around the house (Solon 2016). In an extreme case in South
Korea, a robot vacuum cleaner locked into the hair of a
woman who was sleeping on the floor, mistaking her hair
for dust (McCurry 2015).
A key factor affecting an agent’s performance is its

knowledge of the environment in which it is situated. In
these examples, the agent was performing its task, perhaps
optimally with respect to the information provided to it,
but there were serious negative side effects (NSEs) to the
agent’s actions. In the AV example, driving fast through
puddles is optimal when optimizing travel time. The side
effects are due to the limited scope of the agent’s model,
not accounting for the undesirability of splashing water on
pedestrians. In practice, it is not feasible to anticipate all
possible NSEs and accurately encode them in the model at
design time. Due to the practical limitations in data col-
lection and model specification, agents operating in the
open world often rely on incomplete knowledge of their
target environment which may lead to unexpected, unde-
sirable consequences. Addressing the potential undesir-
able behaviors of autonomous systems is critical to support
long-term autonomy and ensure that a deployed AI system
is reliable.
There have beennumerous recent studies focused on the

broad challenge of building safe and reliable AI systems
(Russell, Dewey, and Tegmark 2015; Amodei et al. 2016;
Saria and Subbaswamy 2019; Thomas et al. 2019). Here,
we examine the particular problem of identifying and mit-
igating the impacts of undesirable side effects of an agent’s
actions when operating in the open world. We do not con-
sider system failure or NSEs that result from intentional
adversarial attack on the system (Biggio and Roli 2018; Cao
et al. 2019).
Negative side effects are undesired effects of an agent’s

actions that occur in addition to the agent’s intended effects
when operating in the open world (Figure 1).
NSEs occur because the agent’s model and objective

function focus on some aspects of the environment but

its operation could impact additional aspects of the envi-
ronment. The value alignment problem studies the unsafe
behavior of an agent when its objective does not align with
human values (Hadfield-Menell et al. 2016; Russell 2017,
2019).Misaligned systems aremore likely to produceNSEs.
However, the occurrence of NSEs does not necessarily indi-
cate that there is a value alignment problem. NSEs can
occur even in settings where the agent optimizes legiti-
mate objectives that align with the user’s goals, due to
incomplete knowledge and distributional shift. For exam-
ple, while driving in Boston, AVs that are programmed to
not run into obstacles were stopped by the local breed of
unflappable seagulls standing on the street (Coren 2018).
Not running into obstacles is well-aligned with the users’
intentions and objectives, but there are side effects because
the agent lacks knowledge that it can edge to startle the
birds and then continue driving. In fact, such knowledge
was later added to the system to resolve the problem. In
addition, some systems may cause unavoidable NSEs that
cannot bemitigated.While the side effectsmay be undesir-
able, the user may accept the system as is, once they learn
about it and recognize that the side effects are unavoidable.
In such cases, we cannot say that there is a value alignment
problem, even though the NSEs may occur.
Certainly, some NSEs could be anticipated or detected

during system development and appropriate mechanisms
to mitigate their impacts could be implemented prior to
deployment. This article focuses on NSEs that are discov-
ered when the system is deployed, due to a variety of fac-
tors such as unanticipated domain characteristics, unan-
ticipated consequences of system or software upgrade, or
cultural differences among the target user and develop-
ment team. Design decisions that may be innocuous dur-
ing initial testing may have a significant impact when a
system is widely deployed. For example, the issue of a
Roomba locking into the hair of a person lying on the
floor emerged only after the system was deployed in Asia.
Overcoming NSEs is an emerging area that is attracting
increased attention within the AI community (Hibbard
2012; Amodei et al. 2016; Hadfield-Menell et al. 2017; Rus-
sell 2017; Zhang, Durfee, and Singh 2018; Krakovna et al.
2019; Shah et al. 2019; Saisubramanian, Kamar, and Zilber-
stein 2020; Turner, Hadfield-Menell, and Tadepalli 2020).
The severity of NSEs may range from mild to severe

impacts. Often, the discussions around the risk of encoun-
tering NSEs have highlighted catastrophic events. While
these discussions are critical and essential, AI systems in
general are carefully designed and tested for such fail-
ures before deployment. With the increasing growth in the
capabilities and deployment of AI systems, it is equally
important to address the NSEs that are not catastrophic
but have significant impacts. Such side effects occur more
frequently but are often overlooked, particularly when
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TABLE 1 Taxonomy of negative side effects
Property Property values
Severity Ranges from mild to

safety-critical
Reversibility Reversible or irreversible
Avoidability Avoidable or unavoidable
Frequency Common or rare
Stochasticity Deterministic or probabilistic
Observability Full, partial, or unobserved
Exclusivity Prevent task completion or not

the only remedy available is to remove the product from
deployment and develop a new version that can avoid the
undesired behavior. Hence, providing end users with the
tools to identify and mitigate the impacts of NSEs is crit-
ical in shaping how users view, interact, collaborate, and
trustAI systems (Saisubramanian, Roberts, andZilberstein
2021).
The rest of this article identifies key characteristics of

NSEs, highlights the challenges in overcoming NSEs, and
discusses the recent research progress in this area. To pro-
mote a better understanding of the prevalence of NSEs
and to provide common test cases for the research com-
munity, we have created a public repository that allows AI
researchers to report new cases. We conclude the article
with a discussion of open questions to encourage future
research in this area.

TAXONOMY OF NEGATIVE SIDE EFFECTS

We introduce a taxonomy of NSEs, as outlined in Table 1.
Understanding the characteristics of NSEs helps design
better solution approaches to detect and mitigate their
impacts in deployed systems.
Severity: The severity of NSEs ranges from mild side

effects that can be largely ignored to safety-critical failures
that require suspension of the system deployment. Safety-
critical side effects are typically addressed by redesigning
the model and hence require extensive evaluation before
redeployment. An example of a safety-critical NSE is an
AV failing to detect a construction worker’s hand ges-
tures (Crane, Logue, and Pilz 2017). We conjecture that
many NSEs lie in the middle with significant impacts that
require attention, but not sufficiently critical to suspend
the service. An AV that does not slow down when going
through puddles can cause significant impacts, but those
are unlikely to be considered sufficiently critical to roll-
back its deployment, particularly if mechanisms are pro-
vided to mitigate the negative impacts. Addressing such
NSE without suspension of service requires agent adapta-
tion and online planning.

Reversilibility: Side effects are reversible if the impact can
be reversed or negated, either by the agent causing it or
via external intervention. For example, breaking a vase is
an irreversible side effect, regardless of the agent’s skills
(Amodei et al. 2016). Side effects such as leavingmarks on a
wall can be fixed by repainting it, but the agentmay require
external assistance to achieve that.
Avoidability: In some problems, it may be impossible

to avoid the NSEs during the course of the agent’s opera-
tion to complete its assigned task. This introduces a trade-
off between performing agent’s assigned task and avoid-
ing the side effects. For example, the side effects of driv-
ing through puddles are unavoidable if all roads leading
to the destination have puddles. Addressing unavoidable
NSE requires a principled approach to balance the trade-
off between avoiding side effects and optimizing the com-
pletion of the assigned task.
Frequency: The frequency of occurrence of NSEs

depends on the environmental conditions and the action
plan. Certain NSE may occur rarely, considering all use
cases, but may occur frequently for a small subset of cases.
A robot pushing a box over a rug may dirty it as an NSE.
This is an example of a frequently occurring NSEwhen the
domain of operation is largely covered with a rug. The fre-
quency of occurrence could impact the approach to iden-
tify NSEs and the corresponding mitigation approach.
Stochasticity: The occurrence of NSEs may be deter-

ministic or probabilistic. Deterministic NSEs always occur
when some action preconditions arise in the open world.
Side effects are probabilistic when their occurrence is not
certain even when the right preconditions arise. For exam-
ple, there may be a small probability that a robot may acci-
dentally slide and scratch thewall while pushing a box, but
that undesired effect may happen only 20 percent of the
times the robot slips.
Observability: The agent’s observability of the actualNSE

or the conditions that trigger them are generally deter-
mined by the agent’s state representation and sensory
input. The side effects may be fully observable, partially
observable, or even unobserved by the agent. Observing a
side effect is different from identifying or recognizing the
impact as a side effect. For example, the agent may observe
the scratch it made on the wall but may not be aware that
it is undesirable, and as a result may not try to avoid it.
Observability is a critical factor when learning to avoid
NSEs.When an external authority provides feedback to the
agent, it may be sufficient for the agent to observe the con-
ditions that trigger the NSE. However, when an agent may
need to identify NSEs on its own, it needs more complex
general knowledge about the open world.
Exclusivity: NSEs may prevent the agent from complet-

ing its assigned task. This category is relatively easier to
identify. Often, however, the side effects negatively impact
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the environment without preventing the agent from com-
pleting its assigned task. Such side effects are typically
difficult to identify at design time. Much of the current
research on avoiding NSEs focuses on side effects that do
not prevent the agent from completing its current primary
task.

CHALLENGES IN AVOIDING NEGATIVE
SIDE EFFECTS

The challenges in avoidingNSEs broadly stem from the dif-
ficulty in obtaining knowledge about NSE a priori, gather-
ing user preferences to understand their tolerance for side
effects, and balancing the potential trade-off between com-
pleting the task and avoiding the side effects.
Model imprecision: Agents designed to operate in the

open world are either trained in a simulator, or operate
based on models created by a designer or generated auto-
matically using data. Regardless of how much effort goes
into the system design and how much data is available for
training and testing, it is generally infeasible to obtain a
perfect description of open-world environments. Practical
challenges inmodel specification, such as the qualification
and ramification problems, and computational complex-
ity consideration often cause the agent to reason based on
models that do not represent all the relevant details in the
open world (Dietterich 2017). Simulators also suffer from
this drawback, as they are also built by designers, resulting
in mismatches between a simulator and the actual envi-
ronment (Ramakrishnan et al. 2019). As a result of reason-
ing with incomplete information, agents may not consis-
tently behave as intended, leading to unexpected and costly
errors, or may completely fail in complex settings.
There are three key reasons why the agent may not have

prior knowledge about the NSEs of its actions. First, iden-
tifying NSEs a priori is inherently challenging. As a result,
this information is often lacking in the agent’s model. Sec-
ond, many AI systems are deployed in a variety of set-
tings, which may be different from the environment used
in training and testing of the agent. This distributional shift
may cause NSE and is difficult to assess during the design
process. Third, NSEs in many settings arise due to user
preference violation. It is generally difficult to precisely
learn or encode human preferences, and account for indi-
vidual or cultural differences. Techniques such as online
model update and policy repair to minimize side effects,
and building more realistic simulators (Dosovitskiy et al.
2017) are some of the promising directions to handle NSEs
due to model imprecision.
Feedback collection: An agent that is unaware of the side

effects of its actions can gather this information through
feedback from users or through autonomous exploration

and model revisions. Although learning from feedback
produces good results in many problems (Lakkaraju et al.
2017; Zhang, Durfee, and Singh 2018; Ramakrishnan et al.
2019; Basich et al. 2020; Saisubramanian, Kamar, and Zil-
berstein 2020; Zhang, Durfee, and Singh 2020), there are
three main challenges in employing this approach in real-
world systems. First, the learning process may not be sam-
ple efficient or may require feedback in a certain format to
be sample efficient, such as correcting the agent policy by
providing alternate actions for execution. Feedback collec-
tion in general is an expensive process, particularly when
the feedback format requires constant human oversight or
imposes significant cognitive overload on the user. Second,
feedback may be biased or delayed or both, which in turn
affects the agent’s learning process. Finally, it is generally
assumed that the agent uses human-interpretable repre-
sentations for querying and feedback collection, but there
may be mismatches between the models of the agent and
human. There are some recent efforts toward addressing
the problem of sample efficiency in learning (Wang et al.
2016; Buckman et al. 2018) and investigating the impact of
bias in feedback for agent learning (Ramakrishnan et al.
2018; Saisubramanian, Kamar, and Zilberstein 2020). Iden-
tifying and evaluating human-interpretable state-action
representations for querying humans is largely an open
problem.
Managing tradeoffs: When NSEs are unavoidable and

interferewith the performance of the agent’s assigned task,
there is a trade-off between completing the task efficiently
and avoiding theNSE. In an extreme case, it may be impos-
sible for the agent to achieve its goal without creating
NSEs. How far should an agent deviate from its optimal
plan in order to minimize the impacts of NSEs? Balanc-
ing this trade-off requires user feedback since it depends
on their tolerance for NSEs. This can be challenging when
the agent’s objective and the side effects are measured in
different units.

APPROACHES TOMITIGATE NEGATIVE
SIDE EFFECTS

This section reviews the emerging approaches to mitigat-
ing the impacts of NSEs. Table 2 summarizes the charac-
teristics of side effects handled by each one of the methods
we mention.

Model and policy update

The occurrence of NSEs in a system depends on the agent’s
trajectory, which is determined by its policy derived using
its reasoningmodel. Hence, a natural approach tomitigate
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TABLE 2 Summary of the characteristics of the surveyed approaches to mitigate negative side effects
Severity Reversibility Avoidability Frequency Stochasticity Observability Exclusivity

(Hadfield-Menell
et al. 2017)

– Irreversible – Frequent Deterministic – –

(Zhang, Durfee, and
Singh 2018)

– Irreversible Avoidable – Deterministic Observable Non-
interfering

(Krakovna et al.
2019)

– – – – – Observable Non-
interfering

(Shah et al. 2019) – Irreversible – Frequent Deterministic Observable Non-
interfering

(Zhang, Durfee, and
Singh 2020)

– Irreversible – – Deterministic Observable –

(Turner,
Hadfield-Menell,
and Tadepalli
2020)

– Irreversible Avoidable Frequent Deterministic Observable Non-
interfering

(Saisubramanian,
Kamar, and
Zilberstein 2020)

Not safety-
critical

Irreversible – Frequent Deterministic – Non-
interfering

(Turner, Ratzlaff,
and Tadepalli
2020)

– – – Frequent Deterministic – –

(Krakovna et al.
2020)

Not safety-
critical

– – – – Observable –

(Saisubramanian,
Roberts, and
Zilberstein 2021)

– – – Frequent Deterministic – Non-
interfering

‘‘–’’ indicates the approach is indifferent to the values of that property. Although some existing works do not explicitly refer to the severity of the side effects they
can effectively handle, in general these approaches target side effects that are undesirable and significant, but not safety-critical

NSE is to update the model such that the agent’s policy
avoids NSE as much as possible. When the side effects are
safety-critical, the model update may include significant
changes such as redesign of the reward function. Hadfield-
Menell et al. (2017) address such a setting where the NSEs
occur due to unintentional misspecification of rewards
by the designer. It is assumed that the designer prescribes
a proxy reward function and the agent is assumed to be
aware of a possible reward misspecification. The proxy
reward function is treated as a set of demonstrations,
and the agent learns the intended reward function using
approximate solutions for inference. As acknowledged by
the authors, this approach is not scalable to large, complex
settings.
Redesigning the reward function may degrade the

agent’s performance with respect to its assigned task or
introduce new risks, and hence requires exhaustive eval-
uation before redeployment. This could be very expensive
and likely require suspension of operation until the newly
derived policies could be deemed safe for autonomous
operation. In problem domains where the side effects are
undesirable but not safety-critical, the impact can be min-
imized by augmenting the agent’s model with a penalty

function corresponding toNSE. This exploits the reliability
of the existing model with respect to the agent’s assigned
task, while allowing a deployed agent to adjust its behavior
to minimize the side effects.
In related work (Saisubramanian, Kamar, and Zilber-

stein 2020), we describe a multi-objective formulation of
this problem with a lexicographic ordering of objectives
that prioritizes optimizing the agent’s assigned task (pri-
mary objective) over minimizing NSE (secondary objec-
tive). A slack value to the primary objective determines the
maximum allowed deviation from the optimal expected
reward of the primary objective so as to minimize side
effects. This work considers a setting in which the agent
has no prior knowledge about the side effects of its actions.
Information about NSE is gathered using feedback, which
is then encoded by a reward function. The agentmaynot be
able to observe theNSEexcept for the penalty,which is pro-
portional to the severity of the NSE provided by the feed-
back mechanism. The model is updated with this learned
reward function and an updated policy that avoids NSEs as
much as possible, within the allowed slack, is computed.
This formulation can hence handle both avoidable and
unavoidable NSE. However, this approach is not suitable
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for safety-critical consequences since it prioritizes optimiz-
ing the completion of the agent’s assigned task.
Both these approaches address the side effects associ-

ated with the execution of an action, independent of its
outcome.

Constrained optimization

Negative side effects occur when an agent alters features
in the environment that the user does not expect or desire
to be changed. Such side effects can be addressed by con-
straining the features that can be altered by the agent
during its operation. In (Zhang, Durfee, and Singh 2018),
the authors consider a setting in which the uncertainty
over the desirability of altering a feature is included in the
agent’s model and considers deterministic side effects that
are irreversible, but avoidable. The agent first computes a
policy assuming all the uncertain features are “locked” for
alteration. If a policy exists, then the agent executes it. If
no policy exists, the agent queries the human to determine
which features can be altered and recomputes a policy. A
regret minimization approach is used to select the top-k
features for querying. Recently, the authors extended this
approach to identify if NSEs are unavoidable by casting it
as a set-cover problem (Zhang, Durfee, and Singh 2020).
If the side effects are unavoidable, the agent ceases opera-
tion. Therefore, these approaches are not suitable for set-
tings where the agent is expected to alleviate (unavoidable)
NSEs to the extent possible, while completing its assigned
task.

Minimizing deviations from a baseline

Another class of solution methods defines a penalty func-
tion for NSEs as a measure of deviation from a baseline
state, based on the features altered. The deviation mea-
sure reflects the degree of disruption to the environment
caused by the agent’s actions. The agent is expected to
minimize the disruption while pursuing its goal, thereby
mitigating NSEs. In (Krakovna et al. 2019), the authors
present a multi-objective formulation with scalarization,
with the deviation from baseline state measured using
reachability-based metrics. The agent’s sensitivity to NSEs
can be adjusted by tuning the scalarization parameters.
The relative reachability approach (Krakovna et al. 2019)
is not straightforward to apply in settings more complex
than grid-worlds, as acknowledged by the authors. Fur-
thermore, the resulting performance is sensitive to the
metric used to calculate deviations, particularly the choice
of baseline state. Different candidates for baseline states
have been proposed, such as start state and inaction in a

state (Krakovna et al. 2019). These baselines do not con-
sider human preferences and may penalize all side effects.
To overcome this, Shah et al. (2019) present a Maximum
Causal Entropy approach to infer human preferences from
the start state. They assume that an environment is typi-
cally optimized for human preferences and the agent can
mitigate NSEs by inferring human preferences before it
starts acting. This approach, however, requires knowledge
about the dynamics of the environment to determine if the
environment has been optimized for human preferences or
not.

Human-agent collaboration

Approaches such as policy update, constrained optimiza-
tion, and minimizing deviations from a baseline rely heav-
ily on the fidelity of agent’s state representation. In many
cases, however, the agent’s state representation may only
include the features relevant to its assigned task. This
limited representation can impact the agent’s ability to
learn and mitigate NSEs. In recent work (Saisubrama-
nian and Zilberstein 2021), we describe a human-agent
team approach that mitigates NSEs via environment shap-
ing. Environment shaping is the process of applying sim-
ple modifications to the current environment to make it
more agent-friendly and minimize the occurrence of side
effects. The agent optimizes its assigned task, unaware of
the side effects of its actions. The human mitigates the
side effects of the agent through simple reconfigurations
of the environment. This approach is applicable to settings
where the user can assist the agent actively, beyond pro-
viding feedback, and there are one or more agents with
limited state representation. This approach is not suit-
able for environments that are not configurable by the
user or when the agent’s model and policy are frequently
updated.

Accounting for auxiliary objectives
and future tasks

Attainable utility (Turner, Hadfield-Menell, and Tadepalli
2020; Turner, Ratzlaff, and Tadepalli 2020) measures the
impact of side effects as the shifts in the agent’s ability
to optimize for auxiliary objectives, generalizing the rela-
tive reachability measure. Often, the occurrence of NSEs
may not impact the agent’s ability to complete its cur-
rent assigned task but may affect future task completion.
To minimize the interference with future tasks, Krakovna
et al. (2020) present an approach that provides the agent
an auxiliary reward for preserving agent ability to perform
future tasks in the environment. These approaches assume
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F IGURE 2 A public repository of negative side effects

that the agent’s state representation is sufficient to calcu-
late the deviations and are therefore not directly applicable
to settings with mismatches between the agent’s state rep-
resentation and the environment.

A REPOSITORY OF NEGATIVE SIDE
EFFECTS

Since the problem of NSEs is an emerging topic, current
research relies on proof-of-concept toy domains for per-
formance evaluation. Moving forward, understanding the
occurrence of NSEs in deployedAI systems is necessary for
a realistic formulation of the problem and to design effec-
tive solution approaches to address it. To that end, we have
created a repository of NSEs (Saisubramanian 2020b). This
publicly available repository is shown in Figure 2.
This repository contains real-world instances from sci-

entific reports or news articles, identified by us. For each
instance, details such as the problem setting inwhichNSEs
were observed, a description of the side effects, location,
and date of incident, are provided. We believe this reposi-
tory will promote a deeper understanding of the problem,
provide insights about which assumptions are valid, and
facilitate moving beyond simple grid-world type domains
as common test cases to evaluate techniques. We invite
the readers to contribute to this repository by reporting
cases of NSEs of deployed AI systems or laboratory pro-
totypes, based on user experiences, published papers, or
media reports, using an online form we provide (Saisubra-

manian 2020a). Each submission will be reviewed by our
team before adding it to the repository.

OPEN QUESTIONS AND FUTUREWORK

Some key open questions and research directions that can
further the understanding of NSEs and development of
strategies to mitigate their impacts are discussed below.
Negative side effects in multi-agent settings: The existing

works have studied the NSEs of a single agent’s actions
on the environment. In collaborative multi-agent systems,
agents work together to optimize performance and may
have complementary skills. For example, the NSEs pro-
duced by an agentmay be reversible by another agent.How
can we leverage collaborative multi-agent settings to effec-
tively mitigate NSEs? One solution approach is to devise a
joint policy to mitigate the NSEs, in addition to optimiz-
ing the utility of the assigned task. The existing rich body
of work on cooperative multi-agent systems examines how
the intended effects of each agent’s actions may affect the
other agents when devising a joint policy that maximizes
the performance (Pynadath and Tambe 2002; Goldman
and Zilberstein 2003; Zhang and Lesser 2007; Ramakrish-
nan et al. 2019). Extending such frameworks to handle the
side effects problem requires knowledge about the NSEs
of each agent’s actions and how it affects the behavior
and rewards of other agents in the environment. External
feedback may indicate the occurrence of NSEs as a result
of a joint action of the agents. Effectively mitigating the



AI MAGAZINE 69

side effects requires mechanism design for precise identi-
fication of the agent whose actions produce these unde-
sirable effects, based on the feedback provided for joint
actions.
Addressing side effects in partially observable settings: In

partially observable settings, an agent operates based on a
belief distribution over the states. The problem is further
complicated when the agent has no prior knowledge of the
side effects, which may be partially observable or unob-
served. How can an agent effectively learn to avoid NSEs in
partially observable settings? Due to partial observability,
the agent maps the external feedback indicating the occur-
rence of NSEs to a belief distribution and not an exact state.
As a result, a belief distribution may be associated with
multiple conflicting feedback. Depending on how the feed-
back signals are aggregated, different types of agent behav-
ior emerge with varying sensitivity to NSEs.
Combination of side effects: Many AI systems, such

as AVs, are comprised of multiple entities that function
together to achieve a goal. Each of these entities may con-
tribute to different forms of NSEs. It is likely that mul-
tiple forms of NSEs, with varying impacts and severity,
co-exist and require different solution techniques to mit-
igate the overall impact. Reasoning about multiple forms
of risks together is a cornerstone in achieving safe AI sys-
tems.How to ensure that approaches designed to eliminate
one form of side effect do not introduce new risks? One
approach is to evaluate the effects of an impact regularizer
on othermodules in the system that interact with themod-
ule of interest. This requires broad background knowledge
about the architecture and functionality of each compo-
nent, whichmaynot be available in systemswith black-box
components.
Skill discovery to mitigate NSEs: Skill discovery

(Konidaris and Barto 2009; Eysenbach et al. 2018) in
reinforcement learning allows an agent to discover useful
new skills autonomously. High-level skills or options are
temporally extended courses of actions that generalize
primitive actions of an agent. These closed-loop policies
speed up planning and learning in complex environments
and are generally used in hierarchical methods for reason-
ing. Exploring the feasibility of skill discovery for avoiding
NSEs is an interesting direction that could accelerate
agent behavior adaptation, especially to avoid side effects
during agent exploration. For example, if the agent learns
to push a box without scratching the walls or dirtying the
rug, this skill is useful in a variety of related settings and
enables faster behavior adaptation.
Beyond safety and control: This article has discussed the

undesirable side effects in the context of safety and con-
trol in embodied autonomous systems. Investigating NSEs
of decision-support systems and recommender systems is

an important direction for the future. NSEs in these con-
texts may not be immediate, such as the effect on climate
change, human health, or cognitive ability caused by the
system’s decisions.
AI systems may also suffer from other factors that

affect their reliability, such as biases and privacy concerns.
Amplifying underlying biases in a system or increased vul-
nerability to attacks may occur when the system optimizes
incorrect or incompletely specified objectives, which can
be treated as serious side effects that require entire model
redesign. There are growing efforts in the machine learn-
ing community to address many forms of biases and to
improve the security for safeguarding against adversarial
attacks (Kurakin, Goodfellow, and Bengio 2016; Barocas
et al. 2017; Gleave et al. 2019; Peng et al. 2019; Galhotra,
Saisubramanian, and Zilberstein 2021).

CONCLUSION

This article examines the concept of NSEs of AI systems
and offers a comprehensive overview of recent research
efforts to address the challenges presented by side effects.
In doing so, we aim to advance the general understanding
of this nascent but rapidly evolving area. We present a tax-
onomy of NSEs, discuss the key challenges in avoiding side
effects, and summarize the current literature on this topic.
This article also presents potential future research direc-
tions that are aimed at deepening the understanding of
the problem. While some of these issues can be addressed
using problem-specific or ad hoc solutions, developing
general techniques to identify andmitigate NSEs will facil-
itate the design and deployment of more robust and trust-
worthy AI systems.
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